Repozitorij samostojnih visokošolskih in višješolskih izobraževalnih organizacij

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Hyperbolic metric learning in machine learning algorithms for application in oncology : doctoral dissertation
Alenka Trpin, 2024, doktorska disertacija

Opis: Machine learning (ML), a subset of artificial intelligence (AI), enables systems to autonomously learn and adapt without continuous human supervision, leveraging algorithms to process data, identify patterns, and refine performance through experience. This adaptive, selfteaching capability allows ML models to enhance their predictive accuracy and efficiency, making them suitable for dynamic and complex tasks. This dissertation introduces a novel approach to independent and efficient image classification, combining elements from convolutional neural networks (CNNs), hyperbolic geometry, and feature extraction. Unlike existing methods that typically rely on one of these techniques, our integrated approach merges their strengths to achieve superior performance. Additionally, we developed derivative methods based on the original approach, which enhanced capabilities in embedding data in space. All proposed techniques were empirically evaluated on both image and numerical datasets, consistently demonstrating superior performance when compared to baseline methods. Comparative analysis confirmed that our approach achieves higher classification accuracy than traditional techniques. Given the critical role of accurate and efficient diagnostic tools in oncology, where vast amounts of data from various patient examinations need to be processed, the development of robust algorithms is essential for effective cancer diagnosis and treatment. This dissertation specifically addresses cancer image classification, focusing on the differentiation between benign and malignant lesions – an essential task for early cancer detection and treatment. Empirical results showed that embedding the data in a hyperbolic space, combined with the method for metric learning Large Margin Nearest Neighbours (LMNN) method and the use of Poincaré distance in the k-Nearest Neighbours (kNN) algorithm, yielded comparable or superior results compared to traditional classification techniques. Our findings highlight the potential of hyperbolic embeddings and metric learning approaches to advance image classification in oncology, offering a promising direction for further research and clinical applications.
Ključne besede: cancer images, convolutional neural network, embedding data, hyperbolic geometry, image classification, k-nearest neighbours method
Objavljeno v ReVIS: 08.01.2025; Ogledov: 186; Prenosov: 4
.pdf Celotno besedilo (6,67 MB)

2.
Primerjalna analiza Evklidske in Poincaréjeve metrike v algoritmih strojnega učenja : magistrska naloga
Alenka Trpin, 2018, magistrsko delo

Opis: Živimo v času, ko si življenja brez računalnikov ne predstavljamo. Množična uporaba tako imenovane informacijsko komunikacijske tehnologije je proizvedla velike količine podatkov, ki jih sami ne moremo interpretirati in uporabiti. Z orodji podatkovnega rudarjenja in strojnega učenja se velike množice podatkov lahko obdelajo in uporabijo za napovedovanje in klasifikacijo. Eno od orodij za tako obdelavo podatkov je WEKA. Naloga temelji na osnovnem klasifikacijskem agoritem k najbližjih sosedov. V različnih panogah (gospodarstvo, zdravstvo, vojska...) se vedno bolj uporablja in shranjuje podatkovne baze raznovrstnih slik oziroma fotografij. Pri prepoznavanju podobosti med dvema fotografijama je pomembno, da algoritem prepozna določene vzorce. Prepoznavanje temelji na metriki. V ta namen je v orodje WEKA implementiran algoritem, ki temelji na Poincaréjevi metriki. Testiran je na podatkovni množici fotografij. Za namen primerjave je bil uporabljen algoritmom, ki temelji na evklidski metriki.
Ključne besede: podatkovno rudarjenje, strojno učenje, Poincaréjeva metrika, WEKA, k najbližjih sosedov, segmentacija
Objavljeno v ReVIS: 30.11.2018; Ogledov: 5025; Prenosov: 158
.pdf Celotno besedilo (1,07 MB)

Iskanje izvedeno v 0.07 sek.
Na vrh