Repozitorij samostojnih visokošolskih in višješolskih izobraževalnih organizacij

Izpis gradiva
A+ | A- | SLO | ENG

Naslov:Izgradnja, vzdrževanje in optimiziranje napovednih modelov za namen diagnosticiranja zmanjševanja tveganj in lažjega odločanja
Avtorji:Bojanec, Luka (Avtor)
Erman, Nuša (Mentor) Več o soavtorju... Novo okno
Jezik:Slovenski jezik
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FIŠ - Fakulteta za informacijske študije v Novem mestu
Opis:Magistrska naloga govori o napovednih modelih in ugotavlja kako jih optimalno izdelati in uporabljati, ter kako z njimi sprejemati odločitve s čim manj tveganja. Predstavljamo praktične primere napovednih modelov iz različnih področij. V praktičnem delu se ukvarjamo z rakom dojk. S pomočjo prostodostopne podatkovne smo naredili 17 modelov, s katerimi želimo klasificirati bezgavke kot nerakave oziroma rakave. 8 modelov je narejenih na celotni in 9 na zmanjšani bazi podatkov. Najučinkovitejša modela sta bila narejena z metodo SVM. Ugotovili smo, da napovednega modela s 100 % natančnostjo ni mogoče izdelati, da se odgovorni za sprejemanje odločitev ne bodo vedno odločali na podlagi napovednega modela, čeprav jim bo le-ta na voljo, da sprejemanje odločitev na podlagi napovednih modelov prinaša manjša tveganja kot brez njih, da napovedni modeli brez vzdrževanja in posodabljanja ščasoma izgubljajo na napovedni natančnosti in so vedno manj uporabni, ter da so metode poglobljenega učenja po mnenju strokovnjakov pri gradnji napovednih modelov učinkovitejše od statističnih metod in metod strojnega učenja.
Ključne besede:napovedni model, metode strojnega učenja, podatkovno rudarjenje, sprejemanje odločitev, tveganja, uporabnost napovednih modelov, rak dojk
Leto izida:2020
Založnik:{L. Bojanec}
Izvor:Novo mesto
UDK:004.8(043.2)
COBISS_ID:38649091 Povezava se odpre v novem oknu
Opomba:Na ov.: Magistrska naloga : študijskega programa druge stopnje;
Število ogledov:339
Število prenosov:34
Datoteke:.pdf RAZ_Bojanec_Luka_i2020.pdf (3,83 MB)
 
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
Licenca:Priznanje avtorstva-Nekomercialno-Brez predelav Novo okno
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Nazaj