Repository of colleges and higher education institutions

Show document
A+ | A- | Help | SLO | ENG

Title:Hyperbolic metric learning in machine learning algorithms for application in oncology : doctoral dissertation
Authors:ID Trpin, Alenka (Author)
ID Boshkoska, Biljana Mileva (Mentor) More about this mentor... New window
ID Mesti, Tanja (Comentor)
Files:.pdf DR_2024_Alenka_Trpin.pdf (6,67 MB)
MD5: F2A67E89C7F7995C8D9D4E2A71CF360B
 
Language:English
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FIŠ - Faculty of Information Studies in Novo mesto
Abstract:Machine learning (ML), a subset of artificial intelligence (AI), enables systems to autonomously learn and adapt without continuous human supervision, leveraging algorithms to process data, identify patterns, and refine performance through experience. This adaptive, selfteaching capability allows ML models to enhance their predictive accuracy and efficiency, making them suitable for dynamic and complex tasks. This dissertation introduces a novel approach to independent and efficient image classification, combining elements from convolutional neural networks (CNNs), hyperbolic geometry, and feature extraction. Unlike existing methods that typically rely on one of these techniques, our integrated approach merges their strengths to achieve superior performance. Additionally, we developed derivative methods based on the original approach, which enhanced capabilities in embedding data in space. All proposed techniques were empirically evaluated on both image and numerical datasets, consistently demonstrating superior performance when compared to baseline methods. Comparative analysis confirmed that our approach achieves higher classification accuracy than traditional techniques. Given the critical role of accurate and efficient diagnostic tools in oncology, where vast amounts of data from various patient examinations need to be processed, the development of robust algorithms is essential for effective cancer diagnosis and treatment. This dissertation specifically addresses cancer image classification, focusing on the differentiation between benign and malignant lesions – an essential task for early cancer detection and treatment. Empirical results showed that embedding the data in a hyperbolic space, combined with the method for metric learning Large Margin Nearest Neighbours (LMNN) method and the use of Poincaré distance in the k-Nearest Neighbours (kNN) algorithm, yielded comparable or superior results compared to traditional classification techniques. Our findings highlight the potential of hyperbolic embeddings and metric learning approaches to advance image classification in oncology, offering a promising direction for further research and clinical applications.
Keywords:cancer images, convolutional neural network, embedding data, hyperbolic geometry, image classification, k-nearest neighbours method
Place of publishing:Novo mesto
Place of performance:Novo mesto
Publisher:A. Trpin
Year of publishing:2024
Year of performance:2024
Number of pages:XXIII, 157 str.
PID:20.500.12556/ReVIS-11273 New window
COBISS.SI-ID:221306115 New window
UDC:004.93:616-006(043.2)
Note:Na ov.: Doctoral dissertation;
Publication date in ReVIS:08.01.2025
Views:146
Downloads:2
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Title:Metrično učenje s hiperbolično metriko v algoritmih strojnega učenja za aplikacijo v onkologiji
Abstract:Strojno učenje, podmnožica umetne inteligence, omogoča sistemom, da se samostojno učijo in prilagajajo brez stalnega človeškega nadzora, pri čemer uporabljajo algoritme za obdelavo podatkov, prepoznavanje vzorcev in izboljševanje delovanja na podlagi izkušenj. To omogoča modelom, da izboljšajo svojo natančnost in učinkovitost napovedovanja, zaradi česar so primerni za dinamične in zapletene naloge. V tej disertaciji je predstavljen nov pristop k neodvisni in učinkoviti klasifikaciji slik, ki združuje elemente konvolucijskih nevronskih mrež (CNN), hiperbolične geometrije in ekstrakcije atributov. V nasprotju z obstoječimi metodami, ki običajno temeljijo na eni od teh tehnik, naš integrirani pristop združuje njihove prednosti, da bi dosegel vrhunsko učinkovitost. Poleg tega smo na podlagi prvotnega pristopa razvili izpeljane metode, ki so izboljšale vložitev podatkov v prostor. Vse predlagane tehnike so bile empirično ovrednotene na podatkovni množici slik in številčnih podatkih ter so v primerjavi z osnovnimi metodami pokazale boljšo učinkovitost. Primerjalna analiza je potrdila, da naš pristop dosega večjo klasifikacijsko natančnost kot tradicionalne tehnike. Zaradi ključne vloge natančnih in učinkovitih diagnostičnih orodij v onkologiji, kjer je treba obdelati velike količine podatkov iz različnih preiskav bolnikov, je razvoj zanesljivih algoritmov bistvenega pomena za učinkovito diagnosticiranje in zdravljenje raka. Ta doktorska disertacija se posebej ukvarja s klasifikacijo slik raka in se osredotoča na razlikovanje med benignimi in malignimi spremembami, kar je bistvena naloga za zgodnje odkrivanje in zdravljenje raka. Empirični rezultati so pokazali, da je vložitev podatkov v hiperbolični prostor v kombinaciji z metodo za učenje razdalje LMNN (Large Margin Nearest Neighbours) in uporabo Poincaréjeve razdalje v algoritmu k-najbližjih sosedov (kNN) dala primerljive ali boljše rezultate v primerjavi s tradicionalnimi tehnikami klasifikacije. Naše ugotovitve kažejo, da imata vložitev v hiperbolični prostor in metrično učenje potencial za izboljšanje klasifikacije slik v onkologiji ter ponujata obetavno smer za nadaljnje raziskave in razvoj aplikacij v zdravstvu.
Keywords:slike različnih tipov raka, konvolucijska nevronska mreža, vložitev podatkov, hiperbolična geometrija, klasifikacija slik, metoda k-najbližjih sosedov


Back