Naslov: | List strong and list normal edge-coloring of (sub)cubic graphs |
---|
Avtorji: | ID Lužar, Borut (Avtor) ID Máčajová, Edita (Avtor) ID Soták, Roman (Avtor) ID Švecová, Diana (Avtor) |
Datoteke: | Luzar,_Macajova,_Sotak,_Svecova_-_List_strong_and_list_normal_edge-coloring_of_subcubic_graphs.pdf (882,52 KB) MD5: 074E10F036FC215EB0F1F63E10709B62
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Neznano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | FIŠ - Fakulteta za informacijske študije v Novem mestu
|
---|
Opis: | A ▫${\ strong edge-coloring}$▫ of a graph is a proper edge-coloring, in which the edges of every path of length▫$3$▫receive distinct colors; in other words, every pair of edges at distance at most ▫$2$▫ must be colored differently. The least number of colors needed for a strong edge-coloring of a graph is the ▫${\ strong chromatic index}$▫. We consider the list version of the coloring and prove that the list strong chromatic index of graphs with maximum degree ▫$3$▫ is at most ▫$10$▫. This bound is tight and improves the previous bound of ▫$11$▫ colors. We also consider the question whether the strong chromatic index and the list strong chromatic index always coincide. We answer it in negative by presenting an infinite family of graphs for which the two invariants differ. For the special case of the Petersen graph, we show that its list strong chromatic index equals▫$7$▫, while its strong chromatic index is ▫$5$▫. Up to our best knowledge, this is the first known edge-coloring for which there are graphs with distinct values of the chromatic index and its list version. In relation to the above, we also initiate the study of the list version of the normal edge-coloring. A ▫${\ normal edge-coloring}$▫ of a cubic graph is a proper edge-coloring, in which every edge is adjacent to edges colored with ▫$4$▫ distinct colors or to edges colored with ▫$2$▫ distinct colors. It is conjectured that ▫$5$▫ colors suffice for a normal edge-coloring of any bridgeless cubic graph and this statement is equivalent to the Petersen Coloring Conjecture. It turns out that similarly to strong edge-coloring, list normal edge-coloring is much more restrictive and consequently for many graphs the list normal chromatic index is greater than the normal chromatic index. In particular, we show that there are cubic graphs with list normal chromatic index at least ▫$9$▫, there are bridgeless cubic graphs with its value at least ▫$8$▫, and there are cyclically ▫$4$▫-edge-connected cubic graphs with value at least ▫$7$▫. |
---|
Ključne besede: | strong edge-coloring, list strong edge-coloring, normal edge-coloring, list normal edge-coloring, Petersen coloring, Petersen coloring conjecture |
---|
Poslano v recenzijo: | 17.10.2024 |
---|
Datum sprejetja članka: | 01.09.2025 |
---|
Datum objave: | 11.09.2025 |
---|
Leto izida: | 2026 |
---|
Št. strani: | str. 1-19 |
---|
Številčenje: | Vol. 131 |
---|
PID: | 20.500.12556/ReVIS-12259  |
---|
UDK: | 519.17 |
---|
ISSN pri članku: | 1095-9971 |
---|
COBISS.SI-ID: | 249652995  |
---|
DOI: | 10.1016/j.ejc.2025.104243  |
---|
Opomba: | Nasl. z nasl. zaslona;
Opis vira z dne 19. 9. 2025;
Soavtorji: Edita Máčajová, Roman Soták, Diana Švecová;
|
---|
Datum objave v ReVIS: | 19.09.2025 |
---|
Število ogledov: | 178 |
---|
Število prenosov: | 3 |
---|
Metapodatki: |  |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: |  |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |