Repository of colleges and higher education institutions

Search the repository
A+ | A- | Help | SLO | ENG

There are two search modes available: simple and advanced. Simple search searches in titles, abstract, key words and full text, but doesn't enable search operators. Advanced search offers several attributes and search operators to search with. Search results display some data as links. Link on the document title shows more data about that document, while other links perform new searches.

Help
Search in:
Options:
 


641 - 650 / 2000
First pagePrevious page61626364656667686970Next pageLast page
641.
Oblikovanje grafične vizualne identitete tatu umetnice Ivett : diplomska naloga
Teja Koter, 2024, undergraduate thesis

Keywords: diplomske naloge, vizualna identiteta, tetoviranje, grafično oblikovanje
Published in ReVIS: 10.01.2025; Views: 416; Downloads: 20
.pdf Full text (4,96 MB)

642.
643.
Vpliv fizioterapevtsko vodene vadbe v vodi in plavalnih tehnik na bolečine v križu : diplomsko delo visokošolskega strokovnega študijskega programa prve bolonjske stopnje Fizioterapija
Patricija Kompan, 2024, undergraduate thesis

Abstract: Uvod: Bolečine v križu spadajo med enega izmed glavnih zdravstvenih težav sodobnega časa. So ena izmed najpogostejših motenj v kostno-gibalnem sistemu in prizadenejo posameznike vseh starosti. Namen: Namen diplomskega dela je bil ugotoviti, kako uporaba vadbe v vodi in različnih plavalnih tehnik v okviru fizioterapevtski obravnavi vpliva na odpravo bolečin v križu. V sklopu naloge nas je zanimalo tudi, katere tehnike plavanja so za osebe, ki se srečujejo z bolečinami v križu, primerne. Metode: Literaturo, tako domačo kot tujo, smo pridobili iz različnih spletnih podatkovnih baz, kot so PubMed, ResearchGate in Google Scholar. Za iskanje ustrezne literature smo uporabili ključne besede v slovenskem in angleškem jeziku. Za pregled strokovne literature smo uporabili sistematični pregled literature, metasintezo in analizo. V raziskavo smo vključili deset študij. Šest študij je obravnavalo tematiko vadbe v vodi in njenih prednosti, štiri študije pa plavalne tehnike ter njihovo učinkovitost in koristnost. Rezultati: Pregled člankov kaže na pozitivne učinke vadbe v vodi in uporabe plavalnih tehnik pri osebah z bolečinami v križu. Razprava in zaključek: S pregledom raziskav ugotavljamo, da vadba v vodi omogoča učinkovito aktivacijo mišic z manjšo obremenitvijo na sklepe in hrbtenico, kar zmanjšuje tveganje za poškodbe in lajša bolečino, še posebej pri kroničnih težavah. Ob pravilni izvedbi so se vse tehnike plavanja izkazale za koristne, je pa ob nepravilni izvedbi nevarnost poškodb ali možnost poslabšanja stanja večja. Kljub kratkoročnim pozitivnim učinkom vadbe v vodi ostaja pomanjkanje raziskav o dolgoročnih učinkih. Nadaljnje raziskave so za boljše razumevanje predvsem dolgoročnih učinkov vadbe v vodi in uporabe različnih tehnik plavanja pri rehabilitacijskih postopkih oseb z bolečinami v križu nujne.
Keywords: bolečine v križu, fizioterapija, vadba v vodi, voda, plavanje, plavalne tehnike
Published in ReVIS: 09.01.2025; Views: 459; Downloads: 13
.pdf Full text (1,11 MB)

644.
Primerjava pašne in hlevske reje v povezavi s smrtnostjo brojlerjev : diplomska naloga višjega strokovnega izobraževanja
Luka Veternik, 2024, undergraduate thesis

Keywords: brojler, hlevska reja, pašna reja, smrtnost brojlerjev
Published in ReVIS: 09.01.2025; Views: 462; Downloads: 10
.pdf Full text (1,81 MB)
This document has many files! More...

645.
Primerjava gojenja motovilca v prsti z gojenjem motovilca aeroponsko : diplomska naloga višjega strokovnega izobraževanja
Klara Markelj, 2024, undergraduate thesis

Keywords: aeroponika, motovilec, tradicionalno gojenje motovilca v prsti
Published in ReVIS: 09.01.2025; Views: 473; Downloads: 14
.pdf Full text (910,28 KB)
This document has many files! More...

646.
Vpliv tretje razvojne osi na razvoj turizma na Koroškem : magistrska naloga
Marjeta Vinšek, 2024, master's thesis

Keywords: turizem, cestni promet, Koroška, magistrsko delo
Published in ReVIS: 09.01.2025; Views: 419; Downloads: 14
.pdf Full text (3,18 MB)

647.
648.
Hyperbolic metric learning in machine learning algorithms for application in oncology : doctoral dissertation
Alenka Trpin, 2024, doctoral dissertation

Abstract: Machine learning (ML), a subset of artificial intelligence (AI), enables systems to autonomously learn and adapt without continuous human supervision, leveraging algorithms to process data, identify patterns, and refine performance through experience. This adaptive, selfteaching capability allows ML models to enhance their predictive accuracy and efficiency, making them suitable for dynamic and complex tasks. This dissertation introduces a novel approach to independent and efficient image classification, combining elements from convolutional neural networks (CNNs), hyperbolic geometry, and feature extraction. Unlike existing methods that typically rely on one of these techniques, our integrated approach merges their strengths to achieve superior performance. Additionally, we developed derivative methods based on the original approach, which enhanced capabilities in embedding data in space. All proposed techniques were empirically evaluated on both image and numerical datasets, consistently demonstrating superior performance when compared to baseline methods. Comparative analysis confirmed that our approach achieves higher classification accuracy than traditional techniques. Given the critical role of accurate and efficient diagnostic tools in oncology, where vast amounts of data from various patient examinations need to be processed, the development of robust algorithms is essential for effective cancer diagnosis and treatment. This dissertation specifically addresses cancer image classification, focusing on the differentiation between benign and malignant lesions – an essential task for early cancer detection and treatment. Empirical results showed that embedding the data in a hyperbolic space, combined with the method for metric learning Large Margin Nearest Neighbours (LMNN) method and the use of Poincaré distance in the k-Nearest Neighbours (kNN) algorithm, yielded comparable or superior results compared to traditional classification techniques. Our findings highlight the potential of hyperbolic embeddings and metric learning approaches to advance image classification in oncology, offering a promising direction for further research and clinical applications.
Keywords: cancer images, convolutional neural network, embedding data, hyperbolic geometry, image classification, k-nearest neighbours method
Published in ReVIS: 08.01.2025; Views: 555; Downloads: 30
.pdf Full text (6,67 MB)

649.
650.
Search done in 0.51 sec.
Back to top