1. Načrtovanje nevronske mreže za napovedovaje kvalitete tlačnega litja.Đejhan Ljimani, 2025, not set Abstract: Diplomska naloga raziskuje področje umetne inteligence, s poudarkom na uporabi nevronskih mrež za napovedovanje kakovosti pri visokotlačnem litju. Uvodnemu delu, ki podaja kontekstualni okvir, sledi teoretični del, ki obravnava ključne vidike umetne inteligence, vključno z zgodovinskim razvojem umetne inteligence in opisom strojnega učenja, ki vključuje nadzorovano, nenadzorovano in spodbujevalno učenje. Prav tako so v tem delu opisane nevronske mreže, njihova sestava, arhitekturne značilnosti ter lastnosti, skupaj s procesi modeliranja, določitvijo topologije in metrikami za ocenjevanje učinkovitosti regresijskih modelov. Del je zaključen s pregledom programskega jezika Python in njegovih knjižnic za strojno učenje, ki podpirajo analizo v empiričnem delu naloge.
Empirični del naloge vključuje razvoj pilotnega modela napovedovanja kakovosti visokotlačnega litja s pomočjo orodja Orange ter implementacijo nevronske mreže v programskem jeziku Python. S pomočjo teh pristopov naloga prikazuje možno pot za napovedovanje kakovosti izdelkov pri visokotlačnem litju. Keywords: umetna inteligenca, strojno učenje, nevronske mreže, Python, visokotlačno litje. Published in ReVIS: 23.02.2025; Views: 436; Downloads: 6
Full text (1,90 MB) |
2. |
3. Razvoj, ovrednotenje in primerjava odločitvenih modelov za napovedovanje delovanja čistilne naprave : diplomska nalogaMarko Štemberger, 2023, undergraduate thesis Abstract: V diplomski nalogi raziskujemo, kako lahko odločitvene modele v programu Orange
uporabimo za čiščenje odpadne vode. Glavno vprašanje, ki nas zanima, je, kako dobro lahko ti
modeli napovedujejo učinkovitost čistilnih naprav za odpadne vode, še posebej ko gre za
razmerje med različnimi vhodnimi in izhodnimi parametri. Da bi to ugotovili, smo se lotili
kombinacije empirične analize in strojnega učenja. Uporabili smo tri različne algoritme: Neural
Networks (NN), Random Forest (RF) in Naivni Bayes (NB). Da bi še dodatno izboljšali naše
modele, smo vključili tudi algoritem ReliefF, ki nam je pomagal izbrati tiste spremenljivke, ki
najbolj vplivajo na naše rezultate. Glavni cilj naše raziskave je bil razjasniti, kako lahko
odločitveni modeli pomagajo pri čiščenju odpadne vode. Končni cilji so bili jasni: ustvariti
robustne odločitvene modele, preveriti, kako dobro delujejo, in ugotoviti, katere spremenljivke
so ključne za uspešno čiščenje odpadne vode. Keywords: strojno učenje, nevronske mreže, naključni gozd, naivni Bayes, algoritem ReliefF, odločitveni modeli, Orange Published in ReVIS: 06.12.2023; Views: 1654; Downloads: 55
Full text (3,71 MB) |
4. Algorithm for short-time correction of wind speed forecasting models : doctoral dissertationZdravko Kunić, 2023, doctoral dissertation Abstract: In this dissertation, a new algorithm for forecast correction of short-term wind speed predictions is proposed to improve the forecast of bora gusts, frequently resulting in high-speed wind situations dangerous for traffic. The motivation arises from occasionally ambiguous results of the decision support system relying only on the last forecast, which aids traffic management in strong and gusty wind conditions on the roads in Croatia. The proposed correction algorithm uses numerical weather prediction model characteristics to iteratively forecast the wind speed multiple times for the same future window. Iterative predictions are used as input features of the algorithm, and corrected predictions result from the output. The proposed algorithm is tested with artificial neural networks, random forests, support vector machines, and linear regression to demonstrate the superiority of the algorithm performance on a dataset comprising five years of actual data measurements at the Croatian bridge Krk and complementary historical forecasts by ALADIN numerical weather prediction model. Keywords: upravljanje prometa, napoved hitrosti vetra, popravek napovedi, nevronske mreže, zaporedne napovedi, doktorska disertacija Published in ReVIS: 09.11.2023; Views: 1168; Downloads: 47
Full text (3,75 MB) |
5. Zaznavanje sentimenta v novicah z globokimi nevronskimi mrežami : diplomska nalogaAndraž Pelicon, 2019, undergraduate thesis Abstract: Diplomska naloga se ukvarja z analizo sentimenta v novicah. To področje v zadnjem času pridobiva na priljubljenosti, predvsem v okviru napovedovanja gibanja finančnih trgov, vendar je za slovenski jezik še dokaj slabo raziskano. Za slovenščino sicer obstajajo modeli, osnovani na metodi podpornih vektorjev, vendar ti niso dostopni za javno uporabo.
V okviru te raziskave smo zasnovali arhitekturo na osnovi nevronskih mrež, ki za klasifikacijo uporablja kombinacijo samodejno generiranih značilk in TF-IDF obtežitev. Modeli, ki uporabljajo omenjeno arhitekturo, dosegajo primerljive rezultate z že obstoječimi modeli in so sposobni učinkovitega učenja na korpusih v velikosti okrog 10.000 dokumentov. Najuspešnejši model iz raziskave je na voljo kot spletna storitev na naslovu classify.ijs.si. Keywords: analiza sentimenta, novice, slovenščina, nevronske mreže, globoko učenje Published in ReVIS: 04.10.2019; Views: 7002; Downloads: 128
Full text (1,48 MB) |