Repozitorij samostojnih visokošolskih in višješolskih izobraževalnih organizacij

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Comparative analysis of machine learning models for telecommunications churn prediction
Avtorji:ID Cerjan, Maja (Avtor)
ID Mršić, Leo (Avtor)
ID Rabuzin, Kornelije (Avtor)
ID Boshkoska, Biljana Mileva (Avtor)
Datoteke:.pdf RAZ_Cerjan_Maja_2025.pdf (12,52 MB)
MD5: 2EBEEB33F12E23AE224DC803CB606675
 
Jezik:Angleški jezik
Vrsta gradiva:Neznano
Tipologija:1.08 - Objavljeni znanstveni prispevek na konferenci
Organizacija:FIŠ - Fakulteta za informacijske študije v Novem mestu
Opis:Customer retention is a major problem in the telecommunications industry. This study develops and evaluates models to identify possible churners. Machine learning techniques (“Decision Trees”, “Random Forests”, “Logistic Regression” and “Neural Networks (multilayer perceptron MLP)”) were applied through Python and R to analyze the “Telco Customer Churn” Kaggle dataset, based on customer assests and service usage. The data pre-processing compiled missing data and then standardized it. Evaluation used nested 10-fold cross-validation with an inner loop for hyperparameter tuning and mutual-information top-K feature pruning, with pre-processing confined to training folds. In Python, RF and LR achieve F1(~0.629), with Logistic Regression accuracy ~0.75. In R, Logistic Regression performed best (F1 ≈ 0.60 ± 0.03, Accuracy ≈ 0.80 ± 0.01). Metrics derived from pooled confusion matrices averaged over folds equal outer-fold means, confirming generalization across folds and between Python and R. Research offers empirical evidence for transferring and testing churn prediction models across Python and R in telecommunications analytics, with fully reproducible evaluation and results.
Ključne besede:customer churn, telecommunications, churn prediction, logistic regression, neural networks (MLP), Python, R, nested cross-validation
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:Str. [133-146]
PID:20.500.12556/ReVIS-13034 Novo okno
UDK:004.85:654
COBISS.SI-ID:265024515 Novo okno
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 16. 1. 2026; Soavtorji: Leo Mršić, Kornelije Rabuzin, Biljana Mileva Boshkoska;
Datum objave v ReVIS:22.01.2026
Število ogledov:109
Število prenosov:1
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del monografije

Naslov:16th International Conference on Information Technologies and Information Society : ITIS 2025
Uredniki:Maruša Gorišek, Tea Golob, Teja Štrempfel
Kraj izida:Novo mesto
Založnik:Faculty of information studies
Leto izida:2025
ISBN:978-961-96549-2-7
COBISS.SI-ID:263628291 Novo okno

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:odhod strank, telekomunikacije, napovedovanje odhoda strank, strojno učenje, naključni gozd, odločitveno drevo, logistična regresija, nevronske mreže (MLP), Python, R, gnezdena navzkrižna validacija


Nazaj