Repository of colleges and higher education institutions

Show document
A+ | A- | Help | SLO | ENG

Title:Analiza in primerjava obstoječih OCR razvojnih programskih paketov : diplomska naloga
Authors:ID Kegljevič, Simon (Author)
ID Dobrovoljc, Andrej (Mentor) More about this mentor... New window
Files: This document has no files. This document may have a physical copy in the library of the organization, check the status via COBISS. Link is opened in a new window
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FIŠ - Faculty of Information Studies in Novo mesto
Abstract:Tehnologija optične prepoznave znakov je na nekaterih področjih že dolgo uveljavljena in koristna tehnologija. Navkljub temu dejstvu lahko iščemo nove načine za uspešno uporabo na področjih, kjer OCR tehnologija sedaj še ni prisotna. Uporaba omenjene tehnologije na novih področjih pa za podjetje, ki se ukvarja z digitalizacijo dokumentov ter obvladovanjem digitalne dokumentacije, odpira tudi nove tržne priložnosti. Na podlagi želja in potreb takšnega podjetja smo raziskali ponudbo knjižnic oz. rešitev, ki nudijo možnost implementacije tehnologije OCR v lastne programske rešitvah. Ta program je v primeru našega naročnika namenjen majhnim in srednje velikim podjetjem na slovenskem tržišču. Diplomsko delo je razdeljeno na dva dela. V teoretičnem delu je razloženo širše področje OCR tehnologije skupaj s podpornimi procesi. Empirični del vsebuje predstavitev dvanajstih OCR knjižnic, med katerimi sta dve odprtokodni. Knjižnice so ocenjene glede na zadovoljitev šestnajstih izbranih kriterijev. Kriteriji so zbirka želja naročnika in pomembnih funkcionalnosti, ki jih izpostavljajo proizvajalci OCR knjižnic. Od dvanajstih knjižnic jih željam naročnika ustreza osem. Izmed njih smo za nadaljnje testiranje skladno s postavljenimi kriteriji izbrali tri najbolj optimalne.
Keywords:optična prepoznava znakov, digitalizacija, OCR, OCR SDK rešitve, ABBYY, Tesseract
Place of publishing:Novo mesto
Place of performance:Novo mesto
Publisher:[S. Kegljevič]
Year of publishing:2013
Year of performance:2013
Number of pages:65 str.
PID:20.500.12556/ReVIS-4684 New window
COBISS.SI-ID:2048221971 New window
UDC:004.352.242:004.42(043.2)
Note:Na ov.: Diplomska naloga : visokošolskega strokovnega študijskega programa prve stopnje;
Publication date in ReVIS:10.08.2018
Views:3435
Downloads:0
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:10.08.2018

Secondary language

Language:English
Abstract:At the moment, optical character recognition technology is quite well established and useful in some fields of work. Nonetheless we can try and find new ways of successful implementation on new areas, where OCR is not yet present. Use of this technology on new areas will also mean a new market opportunity for a company, which specializes in digitalization and enterprise content management. Based on needs of one such company, we analyzed multiple solutions, which can be used to implement OCR technology in our own programs. Our client wants to implement OCR technology for use in small or medium sized companies on Slovenian market. Thesis is split in two parts. Theoretical part includes wide review of OCR technology along with its supporting processes. Practical part involves analysis of twelve OCR solutions with two open source solutions included. Solutions are rated based on sixteen criteria. Criteria are set according to our clients input, other important functionalities and supporting processes of OCR technology. Out of twelve solutions, eight of them met the requirements of our client and three of the most optimal solutions are picked for advanced testing.
Keywords:Optical character recognition, digitalization, OCR SDK solutions, ABBYY, Tesseract


Back