Repository of colleges and higher education institutions

Show document
A+ | A- | Help | SLO | ENG

Title:Outstanding problems in nonequilibrium statistical physics : doctoral dissertation
Authors:ID Faggian, Marco (Author)
ID Ginelli, Francesco (Mentor) More about this mentor... New window
ID Levnajić, Zoran (Comentor)
Files:.pdf DR_2019_Marco_Faggian.pdf (14,36 MB)
MD5: F79F59C4B1F7DC0AFC623866F772760D
 
Language:Slovenian
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FIŠ - Faculty of Information Studies in Novo mesto
Abstract:This PhD thesis is mainly devoted to the study of different problems in nonequilibrium systems that undergo certain phase transitions. The first part of this thesis constitutes a brief review of fundamental concepts in statistical physics. Many of them, of course, will be useful in the remaining of the thesis. My research is thus articulated in three main chapters. The second chapter focuses on a numerical and experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics provided in a purely temporal optical system. We provide a numerical and experimental study of an effective model for a bistable semiconductor laser, with long-delayed opto-electronic feedback and multiplicative noise showing the peculiar features of a critical phenomenon belonging to the directed percolation universality class. In the third part of the thesis we present a random network of heterogeneous phase oscillators in which the links mediating the interactions are constantly rearranged with a characteristic timescale and an extremely low instantaneous connectivity. We will show that, provided strong coupling and fast enough rewiring are considered, the network is able to reach partial synchronisation even in the vanishing connectivity limit. The last part is dedicated to a systematic test of an effective thermodynamics approach proposed for the identification of critical phase transitions in nonequilibrium systems by making a formal analogy with equilibrium systems. When the authors apply it to experimental data of neurons, this method seems to bring a signature of a "special critical point". However, the approach has never been tested on synthetic data and for this reason we will test it on out of equilibrium toy models that display critical transition in a known range of parameters. In the concluding section I summarise and briefly comment my main results and sketch some directions for further research.
Keywords:statistična fizika, ravnotežna statistična fizika, neenakomerna statistična fizika, termodinamika, kritični pojavi, kritična točka, Kuramoto model, skupina za renormalizacijo, samoorganizirana kritičnost omrežja, Zipfov zakon, efektivni termodinamični pristop
Place of publishing:Novo mesto
Place of performance:Novo mesto
Publisher:[M. Faggian]
Year of publishing:2019
Year of performance:2019
Number of pages:XII, 156 str.
PID:20.500.12556/ReVIS-5738 New window
COBISS.SI-ID:2048583955 New window
UDC:536.9(043.2)
Publication date in ReVIS:28.05.2019
Views:3142
Downloads:174
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:28.05.2019

Secondary language

Language:English
Abstract:Prvi del te disertacije predstavlja kratek pregled temeljnih konceptov statistične fizike. Mnogi od njih bodo seveda koristni v preostalem delu disertacije. Raziskava je tako predstavljena v treh glavnih poglavjih. Drugo poglavje se osredotoča na numerične in eksperimentalne dokaze o absorpcijskem faznem prehodu, ki so ga doslej povezovali s prostorsko-časovno dinamiko v izključno časovnem optičnem sistemu. V tem poglavju predstavimo numerično in eksperimentalno študijo efektivnega modela za bistabilni polprevodniški laser, z dolgo zakasnjenimi optoelektronskimi povratnimi informacijami in multiplikativnim hrupom, ki kaže posebne značilnosti kritičnega pojava, ki spada v razred usmerjene perkolacijske univerzalnosti. V tretjem delu disertacije predstavimo naključno omrežje heterogenih faznih oscilatorjev, v katerem so povezave, ki posredujejo med interakcijami, nenehno preurejene v značilnem časovnem razponu in izredno nizko takojšnjo povezljivostjo. Pokazali bomo, da je omrežje, v primeru močnega sklapljanja in dovolj hitrega ponovnega ožičenja, sposobno doseči delno sinhronizacijo tudi v mejah izginjajoče povezljivosti. Zadnji del je posvečen sistematičnemu preizkusu efektivnega termodinamičnega pristopa, predlaganega za identifikacijo kritičnih faznih prehodov v neravnovesnih sistemih, s formalno analogijo z ravnovesnimi sistemi. Ko jo avtorji uporabijo za eksperimentalne podatke o nevronih, se zdi, da ima ta metoda lastnost "posebne kritične točke". Kakorkoli, ta pristop še ni bil preizkušen na sintetičnih podatkih in zato ga bomo testirali na izven ravnovesnih modelih igrač, ki prikazujejo kritičen prehod v znanih razponih parametrov. V zaključnem delu so povzeti in na kratko komentirani glavni rezultati in orisane nekatere smernice za nadaljnje raziskave.
Keywords:statistical physics, equilibrium statistical physics, nonequilibrium statistical physics, thermodynamics, critical phenomena, critical point, Ising, Kuramoto Model, renormalisation group, self organised criticality, time-varying networks, Zipf's Law, efective thermodynamics approach


Back