Repository of colleges and higher education institutions

Show document
A+ | A- | Help | SLO | ENG

Title:Modelling human cardiorespiratory system through heart-rate variability : Doctoral dissertation
Authors:ID Zorko, Albert (Author)
ID Levnajić, Zoran (Mentor) More about this mentor... New window
ID Moser, Maximilian (Comentor)
Files:.pdf RAZ_Zorko_Albert_i2020.pdf (5,09 MB)
MD5: D5B848FA31E64F24CF9F35AD31257AB6
 
Language:Slovenian
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FIŠ - Faculty of Information Studies in Novo mesto
Abstract:The modern computer resources and the data analysis methods allow for a biomedical data to be examined in a more detail than ever. The heart rate variability (HRV) is an easily accessible vital signal that offers a range of useful information about the person under a study. One such application regards an automatical determining whether a person is awake or asleep from the HRV data only. This is of an importance not just for medical but also for practical applications, such as a traffic safety or smart homes. In this doctoral work we study the HRV data of 75 healthy individuals of a varying age and sex, recorded with a microsecond precision. We employ the empirical fact that heart and respiration cycles couples differently during a sleep and awake period. Namely, a respiratory modulation of a heart rhythm or a respiratory sinus arrhythmia (RSA) is more pronounced while asleep, as both sleep and RSA are connected to a strong vagal activity. Therefore, the onset of sleep can be recognized or perhaps even predicted by a carefully examining the cardio-respiratory coupling. We show that the above can indeed be used, at least in principle, to design an algorithmic method to automatically determine the state of a person's consciousness from the HRV data only. On the methodological front we rely on quantifying the (self)similarity among the shapelets, the short chunks of the HRV time series, that allow for a consistent comparison among and within the time series. To establish a better benchmark, we also carry out a comprehensive analysis of the overall HRV dynamics depending on age and sex. Our results include: (i) that a distinctive patterns of the HRV dynamics are consistent across age and sex, (ii) that they are not only an indicative of sleep and awake, but allow to pinpoint the change from awake to sleep and vice versa almost immediately, (iii) that the shapelet analysis is a viable tool to examine these data with a great precision. We conclude that a more systematic analysis involving more subjects could lead to a practical method for the prediction of the onset of sleep.
Keywords:algoritem, EKG, Holter, vzorčna entropija, razmerje signal-šum, klasifikacija
Place of publishing:Novo mesto
Place of performance:Novo mesto
Publisher:{A. Zorko}
Year of publishing:2020
Year of performance:2020
Number of pages:XXI, 177 str.
PID:20.500.12556/ReVIS-6866 New window
COBISS.SI-ID:29947651 New window
UDC:591.112.2:616.12-073.7(043.2)
Publication date in ReVIS:18.09.2020
Views:2850
Downloads:224
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:18.09.2020

Secondary language

Language:English
Abstract:Sodobni računalniški viri in metode analize podatkov omogočajo, da se biomedicinski podatki podrobneje preučijo kot kadarkoli prej. Spremenljivost srčnega utripa (HRV) je lahko dostopen vitalni signal, ki ponuja vrsto koristnih informacij o preiskovani osebi. Ena takih vlog se nanaša na samodejno določitev, ali je oseba budna ali spi samo z upoštevanjem podatkov o HRV. To je pomembno ne le za medicinsko, temveč tudi za praktično uporabo, na primer prometno varnost ali pametne domove. V tej doktorski disertaciji preučujemo HRV podatke 75 zdravih posameznikov različne starosti in spola, posnete z mikrosekundno natančnostjo. Uporabljamo empirično dejstvo, da sta med spanjem in budnim ciklom srčni utrip in dihanje različno sklopljena. Respiratorna modulacija srčnega ritma ali respiratorna sinusna aritmija (RSA) je namreč med spanjem bolj izrazita, saj sta tako spanec kot RSA povezana z močno vagalno aktivnostjo. Zato je mogoče začetek spanja prepoznati ali morda celo napovedati s skrbnim pregledom kardio-respiratorne sklopljenosti. Pokazali smo, da lahko zgoraj navedeno vsaj načelno uporabimo za načrtovanje algoritemske metode, za samodejno določitev stanja človekove zavesti samo iz podatkov o HRV. Na metodološkem področju se zanašamo na kvantifikacijo (samo)podobnosti med shapeleti, kratkimi delčki časovnih vrst HRV, ki omogočajo dosledno primerjavo med časovnimi vrstami in znotraj nje. Za zagotovitev bolj kvalitetnih rezultatov, smo izvedli obsežno analizo celotne dinamike HRV glede na starost in spol. Naši rezultati vključujejo ugotovitve: (i) da so značilni vzorci dinamike HRV konsistentni s starostjo in spolom, (ii) da ne zaznavamo samo spanja in budnosti, ampak je možno skoraj trenutno zaznavanje spremembe od budnosti do spanja in obratno, iii) da je analiza metode shapeletov uspešno orodje za natančno preučevanje podatkov. Zaključujemo, da bi lahko bolj sistematična analiza, ki vključuje več preiskovancev, pripeljala do praktične metode za napovedovanje začetka spanja.
Keywords:shapelet, algorithm, ECG, Holter, sample entropy, signal to noise ratio, classification


Back