Repository of colleges and higher education institutions

Show document
A+ | A- | Help | SLO | ENG

Title:DETEKCIJA NAPAK LAKIRANJA NA KAROSERIJI AVTOMOBILA
Authors:ID Staniša, Anja (Author)
ID Soković, Mirko (Mentor) More about this mentor... New window
Files: This document has no files that are freely available to the public. This document may have a physical copy in the library of the organization, check the status via COBISS. Link is opened in a new window
Language:Slovenian
Work type:Bachelor thesis/paper
Organization:UNM FS - University of Novo mesto - Faculty of Mechanical engineering
Abstract:Kakovost se pri proizvodnji avtomobilov večkrat preverja tudi v lakirnici, kjer se pregledujejo napake, ki so nastale pri lakiranju karoserije avtomobila. Z uvedbo sistema za detekcijo napak s pomočjo strojnega vida in umetne inteligence (AI) bi proces nadzora kakovosti in odkrivanja napak postal avtomatiziran. S tem bi dosegli večjo natančnost in zanesljivost pri odkrivanju napak. Diplomska naloga opisuje potrebne spremembe za vpeljavo tega novega sistema v proizvodnjo.
Keywords:zagotavljanje kakovosti detekcija napak umetna inteligenca načrtovanje projektov napake lakiranja
Year of publishing:2024
PID:20.500.12556/ReVIS-11122 New window
COBISS.SI-ID:217678595 New window
Publication date in ReVIS:05.12.2024
Views:232
Downloads:1
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:DETECTION OF PAINT DEFECTS ON VEHICLE BODYWORK
Abstract:Quality is frequently inspected during car manufacturing, including in the paint shop, where defects in the vehicle body paint are examined. By introducing a defect detection system powered by artificial intelligence (AI), the quality control and defect detection process would become automated. This would result in greater accuracy and reliability in identifying defects. The thesis describes the necessary changes for the implementation of this new system into the production process.
Keywords:quality assurance defect detection artificial intelligence project planning paint defects


Back