Repository of colleges and higher education institutions

Show document
A+ | A- | Help | SLO | ENG

Title:List strong and list normal edge-coloring of (sub)cubic graphs
Authors:ID Lužar, Borut (Author)
ID Máčajová, Edita (Author)
ID Soták, Roman (Author)
ID Švecová, Diana (Author)
Files:.pdf Luzar,_Macajova,_Sotak,_Svecova_-_List_strong_and_list_normal_edge-coloring_of_subcubic_graphs.pdf (882,52 KB)
MD5: 074E10F036FC215EB0F1F63E10709B62
 
Language:English
Work type:Unknown
Typology:1.01 - Original Scientific Article
Organization:FIŠ - Faculty of Information Studies in Novo mesto
Abstract:A ▫${\ strong edge-coloring}$▫ of a graph is a proper edge-coloring, in which the edges of every path of length▫$3$▫receive distinct colors; in other words, every pair of edges at distance at most ▫$2$▫ must be colored differently. The least number of colors needed for a strong edge-coloring of a graph is the ▫${\ strong chromatic index}$▫. We consider the list version of the coloring and prove that the list strong chromatic index of graphs with maximum degree ▫$3$▫ is at most ▫$10$▫. This bound is tight and improves the previous bound of ▫$11$▫ colors. We also consider the question whether the strong chromatic index and the list strong chromatic index always coincide. We answer it in negative by presenting an infinite family of graphs for which the two invariants differ. For the special case of the Petersen graph, we show that its list strong chromatic index equals▫$7$▫, while its strong chromatic index is ▫$5$▫. Up to our best knowledge, this is the first known edge-coloring for which there are graphs with distinct values of the chromatic index and its list version. In relation to the above, we also initiate the study of the list version of the normal edge-coloring. A ▫${\ normal edge-coloring}$▫ of a cubic graph is a proper edge-coloring, in which every edge is adjacent to edges colored with ▫$4$▫ distinct colors or to edges colored with ▫$2$▫ distinct colors. It is conjectured that ▫$5$▫ colors suffice for a normal edge-coloring of any bridgeless cubic graph and this statement is equivalent to the Petersen Coloring Conjecture. It turns out that similarly to strong edge-coloring, list normal edge-coloring is much more restrictive and consequently for many graphs the list normal chromatic index is greater than the normal chromatic index. In particular, we show that there are cubic graphs with list normal chromatic index at least ▫$9$▫, there are bridgeless cubic graphs with its value at least ▫$8$▫, and there are cyclically ▫$4$▫-edge-connected cubic graphs with value at least ▫$7$▫.
Keywords:strong edge-coloring, list strong edge-coloring, normal edge-coloring, list normal edge-coloring, Petersen coloring, Petersen coloring conjecture
Submitted for review:17.10.2024
Article acceptance date:01.09.2025
Publication date:11.09.2025
Year of publishing:2026
Number of pages:str. 1-19
Numbering:Vol. 131
PID:20.500.12556/ReVIS-12259 New window
COBISS.SI-ID:249652995 New window
UDC:519.17
ISSN on article:1095-9971
DOI:10.1016/j.ejc.2025.104243 New window
Note:Nasl. z nasl. zaslona; Opis vira z dne 19. 9. 2025; Soavtorji: Edita Máčajová, Roman Soták, Diana Švecová;
Publication date in ReVIS:19.09.2025
Views:180
Downloads:3
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:European journal of combinatorics
Shortened title:Eur. j. comb.
Publisher:Academic Press
ISSN:1095-9971
COBISS.SI-ID:53351683 New window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0383
Name:Kompleksna omrežja

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3002
Name:Prirejanja in barvanja povezav v kubičnih grafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4008
Name:Drevesno neodvisnostno število grafov

Funder:SRDA - Slovak Research and Development Agency
Project number:APVV–19–0153
Name:Embedded graphs – colorings and structure

Funder:SRDA - Slovak Research and Development Agency
Project number:APVV-23-0076
Name:Exceptional Structures in Descrete Mathematics: Properties, Constructions and Classifications
Acronym:ESDM

Funder:VEGA - VEGA Grant Agency
Funding programme:Slovakia Research Grant
Project number:1/0173/25

Funder:SRDA - Slovak Research and Development Agency
Project number:APVV-23-0191
Name:Coloring and structure of planar, nested and planar-related graphs

Funder:VEGA - Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
Project number:1/0574/21
Name:Graph colourings with respect to local constraint

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Title:Seznamsko krepko in seznamsko normalno barvanje povezav subkubičnih grafov
Abstract:▫${\ Krepko barvanje povezav}$▫ grafa je pravilno barvanje povezav, pri katerem imajo vse povezave vsake poti dolžine ▫$3$▫ različne barve. Z drugimi besedami, vsaki dve povezavi na razdalji največ ▫$2$▫ morata biti obarvani različno. Najmanjše število barv, potrebnih za krepko barvanje povezav grafa, imenujemo ▫${\ krepki kromatični indeks}$▫. Obravnavamo seznamsko različico barvanja in dokažemo, da je seznamski krepki kromatični indeks grafov z največjo stopnjo ▫$3$▫ kvečjemu ▫$10$▫. Ta meja je tesna in izboljša prejšnjo zgornjo mejo ▫$11$▫ barv. Raziskujemo tudi vprašanje, ali se krepki kromatični indeks in seznamski krepki kromatični indeks vedno ujemata. Na to odgovorimo nikalno, saj predstavimo neskončno družino grafov, pri katerih se ti dve invarianti razlikujeta. Za poseben primer Petersenovega grafa pokažemo, da je njegov seznamski krepki kromatični indeks enak ▫$7$▫, medtem ko je njegov krepki kromatični indeks enak ▫$5$▫. Po našem vedenju je to prvo znano barvanje povezav, za katero obstajajo grafi z različnima vrednostima kromatičnega indeksa in njegove seznamske različice. V povezavi z zgornjim se lotimo tudi preučevanja seznamske različice normalnega barvanja povezav. ▫${\ Normalno barvanje povezav}$▫ kubičnega grafa je pravilno barvanje povezav, pri katerem je vsaka povezava sosednja s povezavami, obarvanimi s ▫$4$▫ različnimi barvami, ali pa s povezavami, obarvanimi z ▫$2$▫ različnima barvama. Obstaja domneva, da zadostuje ▫$5$▫ barv za normalno barvanje povezav vsakega kubičnega grafa brez mostov, pri čemer je ta izrek ekvivalenten \emph{Domnevi o Petersenovem barvanju}. Izkazalo se je, da je – podobno kot pri krepkem barvanju povezav – seznamsko normalno barvanje povezav precej bolj omejujoče, in je zato pri številnih grafih seznamski normalni kromatični indeks večji od normalnega kromatičnega indeksa. Natančneje, pokažemo, da obstajajo kubični grafi s seznamskim normalnim kromatičnim indeksom vsaj ▫$9$▫, kubični grafi brez mostov z vrednostjo vsaj ▫$8$▫, ter ciklično ▫$4$▫-povezani kubični grafi z vrednostjo vsaj ▫$7$▫.
Keywords:krepko barvanje povezav, seznamsko krepko barvanje povezav, normalno barvanje povezav, seznamsko normalno barvanje povezav, Petersenovo barvanje, Domneva o Petersenovem barvanju


Back